How do I integrate ln(x), using integration by parts?

This is a common question among A-Level Maths students, as integration by parts requires 2 things: 1. Something to integrate ; 2. Something to differentiate. In ln(x), we can immediately see that ln(x) is the 'something' that we differentiate. But what about the 'something' to integrate? Here, we have to put our creative mathematical hats on, and imagine a constant '1' behind the ln(x), so imagine it written as 1 x ln(X). Aha! Now we have the 'something' to integrate, which is the constant '1'. After clarifying this issue, the rest of the solution just requires the implementation of the integration by parts technique, which I'll happily demonstrate in the live session!

MK
Answered by Mustafa K. Maths tutor

3823 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the simultaneous equations: y = x - 2 and y^2 + x^2 = 10


How do I differentiate (e^(2x)+1)^3?


A block of temperature H=80ºC sits in a room of constant temperature T=20ºC at time t=0. At time t=12, the block has temperature H=50ºC. The rate of change of temperature of the block (dH/dt) is proportional to the temperature difference of the block ...


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning