How do I integrate ln(x), using integration by parts?

This is a common question among A-Level Maths students, as integration by parts requires 2 things: 1. Something to integrate ; 2. Something to differentiate. In ln(x), we can immediately see that ln(x) is the 'something' that we differentiate. But what about the 'something' to integrate? Here, we have to put our creative mathematical hats on, and imagine a constant '1' behind the ln(x), so imagine it written as 1 x ln(X). Aha! Now we have the 'something' to integrate, which is the constant '1'. After clarifying this issue, the rest of the solution just requires the implementation of the integration by parts technique, which I'll happily demonstrate in the live session!

Answered by Mustafa K. Maths tutor

3254 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation; 4 cos^2 (x) + 7 sin (x) – 7 = 0, giving all answers between 0° and 360°.


A curve is defined for x>0 as y = 9 - 6x^2 - 12x^4 . a) Find dy/dx. b) Hence find the coordinates of any stationary points on the curve and classify them.


Integrate (x^3 - x^2 - 5x + 7) with respect to x.


Given y= sqrt(x) + 4/sqrt(x) + 4 , find dy/dx when x=8 giving your answer in form Asqrt(2) where A is a rational number.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences