How do I integrate ln(x), using integration by parts?

This is a common question among A-Level Maths students, as integration by parts requires 2 things: 1. Something to integrate ; 2. Something to differentiate. In ln(x), we can immediately see that ln(x) is the 'something' that we differentiate. But what about the 'something' to integrate? Here, we have to put our creative mathematical hats on, and imagine a constant '1' behind the ln(x), so imagine it written as 1 x ln(X). Aha! Now we have the 'something' to integrate, which is the constant '1'. After clarifying this issue, the rest of the solution just requires the implementation of the integration by parts technique, which I'll happily demonstrate in the live session!

MK
Answered by Mustafa K. Maths tutor

3583 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

write the vector equation of a line passing through (1,-1,2) and (2,2,2).


A curve has the equation 6x^(3/2) + 5y^2 = 2 (a) By differentiating implicitly, find dy/dx in terms of x and y. (b) Hence, find the gradient of the curve at the point (4, 3).


Find the set of values for which x^2 - 7x - 18 >0


Find the stationary points of y= 5x^2 + 2x + 7


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning