How do I integrate ln(x), using integration by parts?

This is a common question among A-Level Maths students, as integration by parts requires 2 things: 1. Something to integrate ; 2. Something to differentiate. In ln(x), we can immediately see that ln(x) is the 'something' that we differentiate. But what about the 'something' to integrate? Here, we have to put our creative mathematical hats on, and imagine a constant '1' behind the ln(x), so imagine it written as 1 x ln(X). Aha! Now we have the 'something' to integrate, which is the constant '1'. After clarifying this issue, the rest of the solution just requires the implementation of the integration by parts technique, which I'll happily demonstrate in the live session!

MK
Answered by Mustafa K. Maths tutor

3804 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y= (6x^2 - 5)^(3/2) with respect to x


Solve the equation 8x^6 + 7x^3 -1 = 0


Differentiate y=(x^2+1)(e^-x)


What is the integral of x^(3)e^(x) with respect to x?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning