Find dy/dx for y=x^2 * sin(x)

To answer this question we observe that y is the product of x^2 and sin(x), so we use the product rule. Then dy/dx = 2x * sin(x) + cos(x) * x^2 The resulting equation can be tidied up by factoring out x and dividing through by cos(x) to obtain a term involving tan(x).

Answered by Jake H. Maths tutor

7414 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

In this question, take 'log' to mean 'log base 5'. Solve the equation log(x^2-5)-log(x) = 2*log(2)


Given that y=x^3 +2x^2, find dy/dx . Hence find the x-coordinates of the two points on the curve where the gradient is 4.


How/when should I use the product rule for differentiation?


Integrate 5(x + 2)/(x + 1)(x + 6) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences