Find dy/dx for y=x^2 * sin(x)

To answer this question we observe that y is the product of x^2 and sin(x), so we use the product rule. Then dy/dx = 2x * sin(x) + cos(x) * x^2 The resulting equation can be tidied up by factoring out x and dividing through by cos(x) to obtain a term involving tan(x).

Answered by Jake H. Maths tutor

7490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Why is sin(t)^2 + cos(t)^2 = 1 true for all t?


A quantity N is increasing with respect to time, t. It is increasing in such a way that N = ae^(bt) where a and b are constants. Given when t = 0, N = 20, and t = 8, N = 60, find the value: of a and b, and of dN/dt when t = 12


Differentiate the equation 4x^5 + 2x^3 - x + 2


Find the solutions of the equation: sin(x - 15degrees) = 0.5 between 0<= x <= 180


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences