How would I use implicit differentiation to differentiate functions such as: y=tan^-1(ax^2+b) in the form of dy/dx=.....?

First you must write the function in terms on something you know how to differentiate, for example... by taking tan (..) of both sides the equation becomes, tan(y)= ax+b. We then use implicit differentiation. So in our case, tan(y) goes too sec2(y)*dy/dx when differentiating y with respect to x on the left hand side of our re-aranged equation, using the chain rule. The right hand side is completed as normal with respect to x. Leaving us with dy/dx * sec2(y) = 2ax.  This gets us to a final answer of dy/dx = 2ax / (sec2(y)) = 2ax * cos2(y). Using the identity Sin2(x)+Cos2(x)=1 we can get the result in terms of x.

Answered by Charles S. Maths tutor

4838 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

x = t^3 + t, y = t^2 +1, find dy/dx


Given that: y = 3x^2 + 6x^1/3 + (2x^3 - 7)/(3x^1/2), x > 0 Find dy/dx, give each term in its simplest form


Differentiate y = x^3− 5x^2 + 3x


Find the area under the curve y = sin(2x) + cos(x) between 0 and pi/2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences