Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.

The derivative can be found by using the chain rule. i.e. let g(x) = |sin(x)|, so f(x)=ln(g(x)), hence df/dx = df/dg * dg/dx

df/dg = 1/g, dg/dx = |cos(x)| so df/dx = |cos(x)|/|sin(x)|

For the second part, it is key to recognise that if y is negative then ln(y) is indeterminate. Hence if no modulus is present f(x) is indeterminate when sin(x) is negative.

Answered by Luke K. Maths tutor

9414 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find a local minimum of the function f(x) = x^3 - 2x.


Given f(x)=2x^3 - 2x^2 + 8x, find f'(x) and f"(x).


Find the general solution of 2 dy/dx - 5y = 10x


Why does 'x' need to be in radians to differentiate 'sin x'?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences