Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.

The derivative can be found by using the chain rule. i.e. let g(x) = |sin(x)|, so f(x)=ln(g(x)), hence df/dx = df/dg * dg/dx

df/dg = 1/g, dg/dx = |cos(x)| so df/dx = |cos(x)|/|sin(x)|

For the second part, it is key to recognise that if y is negative then ln(y) is indeterminate. Hence if no modulus is present f(x) is indeterminate when sin(x) is negative.

LK
Answered by Luke K. Maths tutor

11841 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(A-Level) Find the coordinate of the stationary point of the curve y = 2x + 27/x^2


Why does the constant disappear when differentiating a function?


How do you know how many roots a quadratic equation has?


Find all solutions of the equation in the interval [0, 2π]. 5 cos^3 x = 5 cos x


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning