Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.

The derivative can be found by using the chain rule. i.e. let g(x) = |sin(x)|, so f(x)=ln(g(x)), hence df/dx = df/dg * dg/dx

df/dg = 1/g, dg/dx = |cos(x)| so df/dx = |cos(x)|/|sin(x)|

For the second part, it is key to recognise that if y is negative then ln(y) is indeterminate. Hence if no modulus is present f(x) is indeterminate when sin(x) is negative.

Answered by Luke K. Maths tutor

10047 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the straight line tangent to the curve y=2x^3+3x^2-4x+7, at the point x=-2.


A sequence is defined as: U(n+1) = 1/U(n) where U(1)=2/3. Find the sum from r=(1-100) for U(r)


Differentiate 4(x^3) + 3x + 2 with respect to x


The curve C is paramterised by the equations: x = 5t + 3 ; y = 2 / t ; t > 0 Find y in terms of x and hence find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences