Show that a pendulum undergoes simple harmonic motion (SHM). State your assumptions. The pendulum is made up of a light inextensible string, attached to a ceiling at one end and with a particle of mass m attached to the other end.

Begin with a diagram of the system, and definition of directions. Vertically up and clockwise rotations are positive. It must be recalled that in SHM force is proportional to displacement from equqilibrium. The key assumptions to make are: 

  1. the string is taught throughout the motion of the pendulum, 

  2. the string doesn't break thtroughout the motion of the pendulum,

  3. the initial angle of displacement from vertical is small, 

  4. there is no drag.

Take the angular displacement from veritcal to be x, and look at the forces on the particle. Assumptions 1) and 2) imply that there is no motion parrallel to the string, and hence the tension in the string must be equal magnitude to the weight of the mass parallel to the string. Hence the resultant force must act perpendicular to the direction of the string. Using trigonometry, this force (F) is: -mgsin(x). where g is the acceleration due to gravity. Now, in the small angle limit sin(x) ~ x so F=-mgsin(x) becomes F~-mgx. Since x is displacement from equilibrium, the system undergoes SHM.

LK
Answered by Luke K. Physics tutor

12363 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Describe and explain the photoelectric effect.


A DVD is dropped from rest. The DVD does not reach terminal velocity before it hits the ground. Explain how the acceleration of the DVD varies from the instant it is dropped until just before it hits the ground.


If a 10N tension force is exerted on a steel beam (E = 200 GPa) with cross-sectional area 1cm^2, what is the stress acting on the beam? What is the change in length of the beam, if the beam is 10cm long?


A ball is released from stationary at a great height. Explain how the forces acting on it change before it hits the ground and how these forces affect the velocity of the ball.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning