Use the chain rule to differentiate y=1/x^2-2x-1

First we will rewrite y so it is written with a power: y=1/x2-2x-1=(x2-2x-1)-1 Now let u=x2-2x-1 => du/dx = 2x -2 Writing y in terms of u: y=u-1 => dy/du= -u-2 = - 1/u2 using the chain rule: dy/dx = dy/du x du/dx =-1/ux (2x-2) substituting back in the value of u: =-(2x-2)/(x2-2x-1)= dy/dx

AP
Answered by Alicia P. Maths tutor

17247 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx when x+2y+3y^2= 2x^2+1


Use integration to find the exact value of [integral of] (9-cos^2(4x)) dx


Find the x-values of the turning points on the graph, y=(3-x)(x^2-2)


A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning