Use the chain rule to differentiate y=1/x^2-2x-1

First we will rewrite y so it is written with a power: y=1/x2-2x-1=(x2-2x-1)-1 Now let u=x2-2x-1 => du/dx = 2x -2 Writing y in terms of u: y=u-1 => dy/du= -u-2 = - 1/u2 using the chain rule: dy/dx = dy/du x du/dx =-1/ux (2x-2) substituting back in the value of u: =-(2x-2)/(x2-2x-1)= dy/dx

Answered by Alicia P. Maths tutor

15967 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find Dy/Dx of (x^2+4x)^3


A curve has equation y = x^3 - 6x^2 - 15x. The curve has a stationary point M where x = -1. Find the x-coordinate of the other stationary point on the curve.


Find the tangent to the curve y=x^2 +2x at point (1,3)


The curve C has the equation y = 2e^x -6lnx and passes through the point P with x - coordinate 1. a) Find the equation to the tangent to C at P


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences