Find the intersection points between the graphs y=2x+5 and y=x^2-9.

To do this, first draw a sketch of both graphs to see roughly what kind of result we should expect to get. We know that at the intersection points, the values of x and y for both graphs must be equal. so set both graphs equal to each other and we get

2x+5=x^2-9

rearranging this equation we then get

0=x^2-2x-14

We then use the quadratic formula to get values for x, for which you get 

x=1+squ. root(15) and x=1- squ. root(15) .          (sorry i didn't know how to insert squ. root symbol)

we then substitute both values into either equation (since we're looking at intersection points) and we get

y=7+ 2squ root(15) and y=7-2squ root(15).

Answered by Srinivass B. Maths tutor

2614 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the indefinite integral of f(x)=(1-x^2)/(1+x^2)


The curve C has equation y = 3x^4 – 8x^3 – 3 Find (i) dy/dx (ii) the co-ordinates of the stationary point(s)


Using the parametric equations x=6*4^t-2 and y=3*(4^(-t))-2, Find the Cartesian equation of the curve in the form xy+ax+by=c


The equation (k+3)x^2 + 6x + k =5 has two distinct real solutions for x. Prove that k^2-2k-24<0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences