Find the intersection points between the graphs y=2x+5 and y=x^2-9.

To do this, first draw a sketch of both graphs to see roughly what kind of result we should expect to get. We know that at the intersection points, the values of x and y for both graphs must be equal. so set both graphs equal to each other and we get

2x+5=x^2-9

rearranging this equation we then get

0=x^2-2x-14

We then use the quadratic formula to get values for x, for which you get 

x=1+squ. root(15) and x=1- squ. root(15) .          (sorry i didn't know how to insert squ. root symbol)

we then substitute both values into either equation (since we're looking at intersection points) and we get

y=7+ 2squ root(15) and y=7-2squ root(15).

Answered by Srinivass B. Maths tutor

2743 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the tangent to the curve y=x^3+3 at the point x=1.


Chris claims that, “for any given value of x , the gradient of the curve y=2x^3 +6x^2 - 12x +3 is always greater than the gradient of the curve y=1+60x−6x^2” . Show that Chris is wrong by finding all the values of x for which his claim is not true.


Given that f(x) = x^2 (3x - 1)^(1/2) find f'(x)


g(x) = x/(x+3) + 3(2x+1)/(x^2 +x - 6) a)Show that g(x) =(x+1)/(x-2), x>3 b)Find the range of g c)Find the exact value of a for which g(a)=g^(-1)(a).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences