Using partial fractions find the integral of (15-17x)/((2+x) (1-3x)^2 )

First seperate the function into the form A/(2+x)  +   B/(1-3x)   +   C/(1-3x)2 . Find A B and C by equating the intergral to {A(1-3x)+B(1-3x)(2+x) +C(2+x)}/(2+x)(1-3x) . Cancelling the denominators gives an equation equal to 15-7x, and in terms of A, B and C. We then use comparison of the right and left hand sides to find A, B and C. By subsituting x=-2, x=1/3 and by comparing coefficients of x2 the values of A B and C can be found. Subbing these into the partial fraction equation(1st line) we can then intergrate this expression, using the fact that the intergral of 1/x is equal to ln(x). 

Answered by Sean B. Maths tutor

4513 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I'm trying to integrate f(x)=sin(x) between 0 and 2 pi to find the area between the graph and the axis but I keep getting 0, why?


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


When Integrating by parts, how do you know which part to make "u" and "dv/dx"?


Why do we have to add the +c when integrating a function


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences