Integrate f(x) = 1/(1-x^2)

1/(1-x2) can be split into the partial fractions A/(1+x) + B/(1-x), where A and B are real constants, which when evaluated by multiplying the equation 1/(1-x2) = A/(1+x) + B/(1-x) through by (1-x2) = (1+x)(1-x) and substituting x =1, and x = -1; we find A = B = 0.5 hence 1/(1-x2) = 1/2(1-x) + 1/2(1+x) which can easily be integrated to 0.5( -log(1-x) + log(1+x)) + c or in the more accepted form 0.5(log(1+x) - log(1-x)) + c. (Where c is a real constant). 

ML
Answered by Mitchell L. Further Mathematics tutor

2446 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How do you find the general solution of a second order differential equation?


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


Solve x^2+8x-5=0 using completing the square


3 points lie in a plane; P1=i+2j+3k, P2=-3i+5j+2k, P3=i+2j+k. Find the Cartesian equation of the plane


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning