Integrate f(x) = 1/(1-x^2)

1/(1-x2) can be split into the partial fractions A/(1+x) + B/(1-x), where A and B are real constants, which when evaluated by multiplying the equation 1/(1-x2) = A/(1+x) + B/(1-x) through by (1-x2) = (1+x)(1-x) and substituting x =1, and x = -1; we find A = B = 0.5 hence 1/(1-x2) = 1/2(1-x) + 1/2(1+x) which can easily be integrated to 0.5( -log(1-x) + log(1+x)) + c or in the more accepted form 0.5(log(1+x) - log(1-x)) + c. (Where c is a real constant). 

ML
Answered by Mitchell L. Further Mathematics tutor

2725 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

How to multiply and divide by complex numbers


Find the general solution to the second order differential equation x'' - 2x' + x = e^(2t).


Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


A particle is projected from the top of a cliff, 20m above the sea level at an angle of 30 degrees above the horizontal at 20m/s. At what vertical speed does it hit the water?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning