Differentiate sin(x)cos(x) using the product rule.

The product rule states (assuming x' is the differential of x): (fg)​′​​=f​′​​g+fg​′​​ Substitute the values into the rule: (sin(x)cos(x))' = sin(x)'cos(x) + sin(x)cos(x)' (sin(x)cos(x))' = cos2(x) - sin2(x)

MP
Answered by Manibharathi P. Maths tutor

9208 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The volume of a cone is V = 1/3*pi*r^2*h. Make r the subject of the formula.


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


given that angles A and B are such that, sec^2A-tanA = 13 and sinBsec^2B=27cosBcosec^2B


The function f is defined as f(x) = e^(x-4). Find the inverse of f and state its domain.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences