Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

Answered by Matias B. Maths tutor

9960 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

How does the right angle triangle definition of sine, cosine and tangent relate to their graphs as a function of angle and to Euler's formula?


What is integration by parts, and how is it useful?


Find the coordinates that correspond to the maximum point of the following equation: y = −16x^2 + 160x - 256


(a) Find the set of values of k that satisfy the inequality k^2 - k - 12 < 0. (b) We have a triangle ABC, of lengths AC = 4 and BC = 2. Given that cos B < 1/4 , find the range of possible values for AB:


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences