Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

MB
Answered by Matias B. Maths tutor

10145 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Take the square root of 2i


Write down the expansion of (cosx + isinx)^3. Hence, by using De Moivre's theorem, find cos3x in terms of powers of cosx.


Given h(x) = 9^x + 9 and g(x) = 10*3^x, find {x | h(x) < g(x)}.


What is the simples way to integrate by part?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences