Answers>Maths>IB>Article

Let g (x) = 2x sin x . (a) Find g′(x) . (b) Find the gradient of the graph of g at x = π .

a)   f'(x)=uv'+vu'     if    f(x)= uv

u=2x  u'=2  v=sin(x)   v'=cos(x)

g'(x)=2x cos(x) +2sin(x)

b)   g'(π) = 2π cos(π)+2sin(π)  = 2 π (-1) + 2 (0)

      g'(π) = -2π

Answered by Matias B. Maths tutor

10010 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

When do you use 'n choose k' and where does the formula come from?


Let (x + 3) be a factor of the polynomial P(x) = x^3 + ax^2 - 7x + 6. Find a and the other two factors.


integrate arcsin(x)


Let Sn be the sum of the first n terms of the arithmetic series 2 + 4 + 6 + ... i) Find S4


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences