How do you solve the following simultaneous equations? Equation 1: 2x + 3y = 13 Equation 2: 3x - y = 3

There are various ways to solve simultaneous equations. The two easiest are by elimiation and by substitution. By Elimation When solving by elimination you want to ensure that you only have one variable (x or y) in the remaining equation. In order to do this you want to have the coefficient (number in front of the variable) equal for one of the variables across the two equations. This requires some manoevering. Equation 2: 3x - y = 3 -3Equation 2 = -9x + 3y = -9 Then you are able to subtract one from the other Equation 1 --3Equation 2 = Equation 1 + 3Equation 2 = 2x + 3y = 13   + 9x - 3y = 9 = 11x = 22 x = 2 if x = 2, then 22 + 3y = 13 so 3y = 9 so y = 3 By Substitution This method means that one variable is rearranged to be the subject of one equation, then is substituted into the other, like seen below. Equation 2: 3x - y = 3 3x = y + 3 y = 3x - 3 Equation 1: 2x + 3y = 13 2x + 3(3x - 3) = 13 2x + 9x - 9 = 13 11x = 22 so x = 2 if x = 2, then 2*2 + 3y = 13 so 3y = 9 so y = 3

Answered by Luke S. Maths tutor

8093 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand the brackets? (x+4)(2x-3)


Solve the simultaneous equations 2x + y = 7 and 3x - y = 8.


The equation of the line L1 is y = 3x – 2 The equation of the line L2 is 3y – 9x + 5 = 0 Show that these two lines are parallel


Expand (t+5)(t-2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences