How do you solve the following simultaneous equations? Equation 1: 2x + 3y = 13 Equation 2: 3x - y = 3

There are various ways to solve simultaneous equations. The two easiest are by elimiation and by substitution. By Elimation When solving by elimination you want to ensure that you only have one variable (x or y) in the remaining equation. In order to do this you want to have the coefficient (number in front of the variable) equal for one of the variables across the two equations. This requires some manoevering. Equation 2: 3x - y = 3 -3Equation 2 = -9x + 3y = -9 Then you are able to subtract one from the other Equation 1 --3Equation 2 = Equation 1 + 3Equation 2 = 2x + 3y = 13   + 9x - 3y = 9 = 11x = 22 x = 2 if x = 2, then 22 + 3y = 13 so 3y = 9 so y = 3 By Substitution This method means that one variable is rearranged to be the subject of one equation, then is substituted into the other, like seen below. Equation 2: 3x - y = 3 3x = y + 3 y = 3x - 3 Equation 1: 2x + 3y = 13 2x + 3(3x - 3) = 13 2x + 9x - 9 = 13 11x = 22 so x = 2 if x = 2, then 2*2 + 3y = 13 so 3y = 9 so y = 3

Answered by Luke S. Maths tutor

7952 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the nth term of the sequence 5, 7, 9, 11....


factorise 2x^2 - x - 6


Factorise x^2 + 2x – 15


Sam works for £14 per hour. When Sam works more than 8 hours a day, he is paid overtime for each hour he works more than 8 hours at 1½ times his normal rate of pay. Sam worked for 12 hours. Work out the total amount of money Sam earned.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences