A block of ice slides down the full height from one side of a 1m high bowl and up the other side. Assuming frictionless motion and taking g as 9.81ms-2, find the speed of the block at the bottom of the bowl and the height it reaches on the the other side.

Using the law of conservation of energy, the potential energy of the block is transferred to kinetic energy as it slides down. KE [0.5mv2] = PE [mgh], v = √2gh v = √29.811 = 4.43 ms-1 The block's KE will be transferred back to PE as it rises so it will slide up to the same height it slid down from - 1m.

Answered by Oluwatosin S. Physics tutor

1964 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A small ball of mass 150 g is placed at a height of 20cm above the ground on an incline of 35°. It is released and allowed to roll down the slope; what will be the ball's speed when it reaches the ground? Assume friction and air resistance can be ignored.


What are the SUVAT equations and how can I remember them?


Do the SUVAT equations work for acceleration that changes with time?


What path would a charge moving in the x-y plane track, in the presence of a uniform magnetic field out of the page?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences