How do you use the completing the square method to solve a quadratic equation?

First you need to get the quadratic equation in completed square form. 
This looks like: (x+p)^2 + q 

To put an expression in completed square form you can use this formula: x^2 + 2bx + c = (x+b)^2 - b^2 + c

Once in this form you can solve the equation for x by rearranging. 

For example: solve x^2 + 4x -5=0 using the completing the square method.

Using the formula with b = 2 and c = -5 gives: (x+2)^2 – 2^2 – 5 = 0

And simplifying leads to:

(x+2)^2 – 9 = 0 Rearranging gives:

(x+2)^2 = 9

x + 2 = ± 3

x = - 2 ± 3 

So the answers are:

x = 1 or x= -5

Answered by Caroline P. Maths tutor

3104 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A 20-foot ladder is leaning against a vertical wall. The bottom of the ladder is pulled away horizontally from the wall at 3 feet per second. How fast is the top of the ladder sliding down the wall when the bottom of the ladder is 10 feet away?


'There are two adults and two children in the Adams family. They buy an all-day travel ticket for each person. The price is £8 for each adult and £5 for each child. They also buy 4 ice-creams at £1.95 each. How much do they spend in total?'


Expand and Simplify 3x(8y-2) - 4y(6x -3) + 2x = 0


Use the Intermidiate Value Theorem to prove that there is a positive number c such that c^2 = 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences