To calculate the minimum value of A we first need to establish an equation for A. The surface area of a cuboid is relatively simple to figure out we simply work out the area of the faces and sum them together, this gives us the rather messy equation A = 4x2 + 2xh + 4xh. We can simplify this by replacing one of the variables, in this instance h seems like a good candidate. By using the fact that the volume is 1030 cm^3, we can write, h = 515/ x2, which after replacing h gives us, A = 4x2 + 3090/x. Now we need to find the value of x for which A is a minimum. Since the question states we need to use calculus it is a good indication that this question will probably involve differentiation. We first want to find a turning or stationary point (i.e maxima or minima) which occur when the differential equation is equal to zero. So we begin by setting the differential to 0. f'(x) = 8x - 3090/ x2, so at the mimimum (i.e when f'(x)=0), 8x - 3090/x2 = 0, which means xmin=7.28 To double check it is a minimum we differentiate again and check that our xmin value when substituted in to the double differential is a positive value. Now to find the minimum value of A we simply substitute or xmin value in the equation for A which give our minimum value of A as 636 so Amin=636.