What is the point of differentiation?

Differentiation is a very useful concept; informally it tells us how 'fast' something is changing. A real-life example is given by the first and second derivatives of distance with respect to time: the first derivative represents speed and the second derivative represents acceleration. It turns out there are higher-order derivatives called jerk, snap, crackle, and pop!

Answered by Jake H. Maths tutor

9179 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx of the equation y=x^2 ln⁡(2x^2+1).


The points A and B have coordinates (2,4,1) and (3,2,-1) respectively. The point C is such that OC = 2OB, where O is the origin. Find the distance between A and C.


Show that the derivative of tan(x) is sec^2(x), where sec(x) is defined as 1/cos(x). [Hint: think of tan(x) as a quotient of two related functions and apply the appropriate identity]


A curve with equation y = f(x) passes through the point (4,25). Given that f'(x) = (3/8)*x^2 - 10x^(-1/2) + 1, find f(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences