Prove the quadratic formula for ax^2 + bx + c = 0, where a is non 0 and a,b and c are reals.

By completing the square: ax^2 + bx + c = 0 => x^2 + (bx)/a + c/a = 0 (divide both side by a, since a is non-zero) => (x + b/(2a))^2 + c/a - (b/(2a))^2 = 0 (If this is not immediately clear, try expanding it to obtain line above) => (x + b/(2a))^2 = (b^2 - 4ac)/(2a)^2 => x+ b/(2a) = ±(b^2 - 4ac)^(1/2)/(2a) (square root both side introduce ± signs) => x = (-b ± (b^2 - 4ac)^(1/2))/(2a)

SN
Answered by ShenZhen N. Maths tutor

9457 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How can I solve a quadratic equation by factorisation?


(x+6) and (x+5) are the length and width, respectively, of a rectangle with area 20. Calculate the width of the rectangle.


Express 160 as a product of its prime factors


Jill and four friends go camping together for 5 days. The friends share the cost of the trip equally. These costs are: £120 for fuel, £58 for food, £100 for equipment and £207 for activities. How much does Jill have to pay for her share of the costs?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning