Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

Answered by Karan S. Maths tutor

12947 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with equation x^2+y^2-2x+8y-40=0. Find the circle centre and the radius


given that y = 1 when x = π, find y in terms of x for the differential equation, dy/dx = xycos(x)


Solve the inequality 4x^2​>5x-1


Find dy/dx for y = x^3*e^x*cos(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences