Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

KS
Answered by Karan S. Maths tutor

14373 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the equation of the curve that has gradient dy/dx=(4x-5) and passes through the point (3,7)?


Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


Express root(125^x)/5^(2x-1) in terms of 5^a where a is an expression in terms of x.


Find the stationary points of the curve f(x) =x^3 - 6x^2 + 9x + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning