Given that y = x^4 + x^(1/3) + 3, find dy/dx

We use the rule that if y = x^n then dy/dx = n*x^(n-1) which is valid whether or not n is an integer. 

We also use that differentiation is a linear operation, which means that we can differentiate term by term in the expression for y.

Noting that 3 = 3*x^0, we therefore have

dy/dx = 4*x^3 + (1/3)*x^(-2/3) + 0

KS
Answered by Karan S. Maths tutor

14752 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


Differentiate with respect to x: y = xln[2x]


Differentiate y= (2x+1)^3. [The chain rule]


Two lines have equations r = (1,4,1)+s(-1,2,2) and r = (2,8,2)+t(1,3,5). Show that these lines are skew.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning