How do I multiply complex numbers?

A complex number has the form a+bi. We call a the 'real' bit (ie. the bit on a regular number line) and b is the 'imaginary bit. 
Multiplying complex numbers is done in a very similar way to multiplying out brackets. However, you need to remember that i2 = -1.
For example: what is (6+i) x (5+2i)?
We multiply out the brackets, and get: 6x5 + 6x2i + ix5 +ix2i
This gives 30 + 12i + 5i - 2 (because i2=-1).
Collecting like terms we get 28+17i which is our answer.

CB
Answered by Chloe B. Maths tutor

4901 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate y = 2x^3 + 6x^2 + 4x + 3 with respect to x.


Find the gradient, length and midpoint of the line between (0,0) and (8,8).


The variables x and y are related by y = 5^x. How do I find the value of x when y is set to 15?


Why is sin(t)^2 + cos(t)^2 = 1 true for all t?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences