How to differentiate y=(x^2+4x)^5

To differentiate y=(x2+4x)5 you need to use the chain rule. The chain rule uses the fact that dy/dx = dy/dt * dt/dx. 

Here we create a new variable t, where t = x2+4x. Substituting this in the original equation gives y=t5

Differentiating t=x2+4x with respect to x; dt/dx = 2x+4

Differentiating y=t5 with respect to t; dy/dt = 5t4

We can combine these two equations to find dy/dx, as the chain rule states dy/dx = dy/dt * dt/dx.

This gives dy/dx = 5t4*(2x+4)

Substituting in our value of t, gives the final answer dy/dx = 5(x2+4x)4(2x+4)

AM
Answered by Alexandra M. Maths tutor

7259 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

f(x)= 2x^3 -7x^2 + 2x +3. Given that (x-3) is a factor of f(x), express f(x) in a fully factorised form.


differentiate with respect to x: (x^3)(e^x)


How would I differentiate cos(2x)/x^1/2


2(x^2)y + 2x + 4y – cos (PI*y) = 17. Find dy/dx using implicit differentiation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning