Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0

dy/dx = (dy/du)(1/x), d^2(y)/dx^2 = (d^2(y)/du^2)(1/(x^2)) - (dy/du)*(1/(x^2))   

(x^2)( (d^2(y)/du^2)(1/(x^2)) - (dy/du)(1/(x^2)) ) + x(dy/du)*(1/x) + y = 0       

d^2(y)/du^2 - dy/du + dy/du + y = 0  

d^2(y)/du^2 + y = 0

y = Asin(u) + Bcos(u)

y = Asin(ln(x)) + Bcos(ln(x))                   

IK
Answered by Isis K. Further Mathematics tutor

4058 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Does the following matrix A = (2 2 // 3 9) (upper row then lower row) have an inverse? If the matrix A^2 is applied as a transformation to a triangle T, by what factor will the area of the triangle change under the transformation?


A tank contains 500L of salty water. Pure water is pumped in at a rate of 10 L/sec, and the the mixture is pumped out at a rate of 15L/ sec. If the concentration of salt is 5g/L initially, form an equation of amount of salt, s, at t seconds.


Given that p≥ -1 , prove by induction that, for all integers n≥1 , (1+p)^k ≥ 1+k*p.


What are differential equations, and why are they important?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences