Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0

dy/dx = (dy/du)(1/x), d^2(y)/dx^2 = (d^2(y)/du^2)(1/(x^2)) - (dy/du)*(1/(x^2))   

(x^2)( (d^2(y)/du^2)(1/(x^2)) - (dy/du)(1/(x^2)) ) + x(dy/du)*(1/x) + y = 0       

d^2(y)/du^2 - dy/du + dy/du + y = 0  

d^2(y)/du^2 + y = 0

y = Asin(u) + Bcos(u)

y = Asin(ln(x)) + Bcos(ln(x))                   

IK
Answered by Isis K. Further Mathematics tutor

4417 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Calculate the value of the square root of 3 to four decimal places using the Newton-Raphson process


How do I integrate (sin x)^6?


By use of matrices uniquely solve the following system of equations, justifying each step of the calculation: 3x-7y=6, 5y-2x=-3.


Differentiate arcsin(2x) using the fact that 2x=sin(y)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning