Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0

dy/dx = (dy/du)(1/x), d^2(y)/dx^2 = (d^2(y)/du^2)(1/(x^2)) - (dy/du)*(1/(x^2))   

(x^2)( (d^2(y)/du^2)(1/(x^2)) - (dy/du)(1/(x^2)) ) + x(dy/du)*(1/x) + y = 0       

d^2(y)/du^2 - dy/du + dy/du + y = 0  

d^2(y)/du^2 + y = 0

y = Asin(u) + Bcos(u)

y = Asin(ln(x)) + Bcos(ln(x))                   

IK
Answered by Isis K. Further Mathematics tutor

4646 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate (4x+3)^1/2 with respect to x.


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


Find the vector equation of the line of intersection of the planes 2x+y-z=4 and 3x+5y+2z=13.


For a homogeneous second order differential equation, why does a complex conjugate pair solution (m+in and m-in) to the auxiliary equation result in the complementary function y(x)=e^(mx)(Acos(nx)+Bisin(nx)), where i represents √(-1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning