How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4

I would differentiate it and then turn it into an equation to find the points where the gradient equals zero. With these points at hand, I would take a second derivative, this tells me how the gradient changes with x and from this I would plug in my known points to see what value pops out. If it's postive I know that this stationary point is a minimum and if it's negative I know that this stationary point is a maximum. If the answer is zero then this hints at (but doesnt al+ways mean) a point of inflection. dy/dx = 3x2 - 12x + 9 3x2 -12x + 9 = 0 x2 - 4x + 3 = 0 (Dividing both sides with 3) (x - 3)(x-1) = 0, x=3 and x=1. d2y/dx= 6x -12 When x = 1, d2y/dx2 = -6 therefore a maximum When x = 3, d2y/dx2 = 6 therefore a minimum.

Answered by William M. Maths tutor

4820 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that the binomial expansion of (1+kx)^n begins 1+8x+16x^2+... a) find k and n b) for what x is this expansion valid?


The line PQ is the diameter of a circle, where points P and Q have the coordinates (4,7) and (-8,3) respectively. Find the equation of the circle.


When do you use integration by parts?


How to differentiate using the Product Rule


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences