How would you determine what sort of stationary point this curve has? x^3 - 6x^2 + 9x - 4

I would differentiate it and then turn it into an equation to find the points where the gradient equals zero. With these points at hand, I would take a second derivative, this tells me how the gradient changes with x and from this I would plug in my known points to see what value pops out. If it's postive I know that this stationary point is a minimum and if it's negative I know that this stationary point is a maximum. If the answer is zero then this hints at (but doesnt al+ways mean) a point of inflection. dy/dx = 3x2 - 12x + 9 3x2 -12x + 9 = 0 x2 - 4x + 3 = 0 (Dividing both sides with 3) (x - 3)(x-1) = 0, x=3 and x=1. d2y/dx= 6x -12 When x = 1, d2y/dx2 = -6 therefore a maximum When x = 3, d2y/dx2 = 6 therefore a minimum.

Answered by William M. Maths tutor

4539 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the equation 2y^(1/2) -7y^(1/4) +3 = 0


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


Prove that 2Sec(x)Cot(x) is identical to 2Cosec(x)


Prove 2^n >n for all n belonging to the set of natural numbers


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences