solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

First step is to seperate the variables (EQ1) : (1/y^2) dy = 6x   Then we integrate each side seperately giving us (EQ2) : -1/y = 3x^2 + C (remembering to add 1 to the power and divide by the new power) subbing in the values for y (1) and x (2) we get - 1 = 12 + C. Therefore C = -13. Subbing this back into EQ2 and rearranging for y we get y = -1/(3x^2  - 13)

Answered by Dylan M. Maths tutor

9214 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y = ln((2x+3)/(7x^3 +1)). Find dy/dx


Find the gradient of the curve y=2sinx/x^3 at the point x=


The line AB has equation 5x + 3y + 3 = 0. The line AB is parallel to the line with the equation y = mx + c. Find the value of m.


Find the indefinite integral of ( 32/(x^3) + bx) over x for some constant b.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences