solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

First step is to seperate the variables (EQ1) : (1/y^2) dy = 6x   Then we integrate each side seperately giving us (EQ2) : -1/y = 3x^2 + C (remembering to add 1 to the power and divide by the new power) subbing in the values for y (1) and x (2) we get - 1 = 12 + C. Therefore C = -13. Subbing this back into EQ2 and rearranging for y we get y = -1/(3x^2  - 13)

Answered by Dylan M. Maths tutor

9019 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


Express 5/[(x-1)(3x+2)] as partial fractions.


Given the parametric equations x = t^2 and y = 2t -1 find dy/dx


(ii) Prove by induction that, for all positive integers n, f(n) = 3^(3n–2) + 2^(3n+1) is divisible by 19


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences