solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2

First step is to seperate the variables (EQ1) : (1/y^2) dy = 6x   Then we integrate each side seperately giving us (EQ2) : -1/y = 3x^2 + C (remembering to add 1 to the power and divide by the new power) subbing in the values for y (1) and x (2) we get - 1 = 12 + C. Therefore C = -13. Subbing this back into EQ2 and rearranging for y we get y = -1/(3x^2  - 13)

Answered by Dylan M. Maths tutor

9259 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the gradient of the function f(x) = 2x^2 + 3x - 7 at the point where x = -2?


A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


How do I maximise/minimise a given function f(x)?


Differentiate 5x^2+5y^2-6xy=13 to find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences