Solve the simultaneous equations, 3x + 2y = 4 (1) 4x + 5y = 17 (2)

Solving simultaneous equations by elimination; firstly you would multiply the first equation by 4 to get another equation which we will name (3), and multiply the second equation by 3 to get another equation which we will name (4). This makes the coefficient of the x values the same, 12. Using this you can eliminate the x variable and find that the y value is 5 (can be shown using the whiteboard) Since we know what the y value is equivalent to, we can sub it into any equation and find the x value also. An additional step could be to check whether the solution is valid by inserting the solutions into another equation and seeing if it holds (can also be done on the whiteboard). Therefore, the final answer should be x = -2, y = 5

AP
Answered by Akash P. Maths tutor

4403 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you use Pythagoras' Theorem?


2x-4=6, find x.


How do you factorise a quadratic? Something like x^2 + 4x + 3


There are 495 coins in a bottle. 1/3 of the coins are £1 coins. 124 of the coins are 50p coins. The rest of the coins are 20p coins. Work out the total value of the 495 coins


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences