Solve the simultaneous equations, 3x + 2y = 4 (1) 4x + 5y = 17 (2)

Solving simultaneous equations by elimination; firstly you would multiply the first equation by 4 to get another equation which we will name (3), and multiply the second equation by 3 to get another equation which we will name (4). This makes the coefficient of the x values the same, 12. Using this you can eliminate the x variable and find that the y value is 5 (can be shown using the whiteboard) Since we know what the y value is equivalent to, we can sub it into any equation and find the x value also. An additional step could be to check whether the solution is valid by inserting the solutions into another equation and seeing if it holds (can also be done on the whiteboard). Therefore, the final answer should be x = -2, y = 5

AP
Answered by Akash P. Maths tutor

4406 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

x - 2y = 1 , x^2 + y^2 = 13 find the solutions to this quadratic equation


Show that the two lines are parallel: L1: 4y = 24x +12, L2: 2y + 13 = 12x


A cuboid with a volume of 912cm^3 has the dimensions 4 cm, (x + 2) cm and (x + 9) cm. Find an equation in terms of x and solve to find the dimension.


There are "n" sweets in a bag, six are orange and the rest are yellow. If you take a random sweet from the bag and eat it. Then take at random another one and eat it. The probability of eating two orange sweets is 1/3. Show that n²-n-90=0.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences