Explain how Differentiation by the chain rule works

If the expression to be differentiated is a (differentiable) function of another (differentiable) function, then the chain rule must be applied. For example y= f(g(x)), where f and g are both differentiable, then dy/dx = f'(g(x)).g'(x). To simplify this, it can be looked at as a simple substitution:
Let g(x)=u, then, the chain rule states that, dy/dx=(du/dx).(dy/du). For example, should the expression to be differentiated be (cos(x))^2, then let u=cosx, du/dx = -sin(x), y=u^2, dy/du=2u, therefore dy/dx = -sin(x).2(cos(x)).

Answered by Gwyndaf O. Maths tutor

3180 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined by the parametric equations x=t^2/2 +1, y=4/t -1. Find the gradient of the curve when t =2.


How to differentiate y=(x^2+4x)^5


Why do we get cos(x) when we differentiate sin(x)?


A curve, C, has equation y =(2x-3)^5. A point, P, lies on C at (w,-32). Find the value of w and the equation of the tangent of C at point, P in the form y =mx+c.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences