Explain how Differentiation by the chain rule works

If the expression to be differentiated is a (differentiable) function of another (differentiable) function, then the chain rule must be applied. For example y= f(g(x)), where f and g are both differentiable, then dy/dx = f'(g(x)).g'(x). To simplify this, it can be looked at as a simple substitution:
Let g(x)=u, then, the chain rule states that, dy/dx=(du/dx).(dy/du). For example, should the expression to be differentiated be (cos(x))^2, then let u=cosx, du/dx = -sin(x), y=u^2, dy/du=2u, therefore dy/dx = -sin(x).2(cos(x)).

GO
Answered by Gwyndaf O. Maths tutor

3973 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the normal to the curve y = 2x^2 -3x +7 at the point x = 1.


f(x)=12x^2e^2x - 14, find the x-coordinates of the turning points.


How would I integrate the indefinite integral x^2 dx?


How can I determine the characteristics of a curve on an x-y set of axis (eg. points of intersection, stationary points, area under graph)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning