A golf ball is hit from horizontal ground with speed 10 m/s at an angle of p degrees above the horizontal. The greatest height the golf ball reached above ground level is 1.22m. Model the golf ball as a particle and ignore air resistance. Find p.

Initial horizontal speed of particle = 10cos(p) m/s. Initial vertical speed of particle = 10sin(p) m/s. ('U' in suvat.) There are no forces other than gravity acting on the particle so the vertical acceleration on the partical while it is moving upwars is -9.8 m/s2. ('A' in suvat.) The greatest height reached by the golf ball is 1.22m. ('S' in suvat.) At this point, the ball has a vertical velocity of 0 m/s ('V' in suvat) as it is not moving upwards or downwards. Using this information, obtained from the question, we find out p using the suvat equation V2 = U2+2AS. 02 = (10sin(p))2 +2(-9.8)(1.22) 100sin2 (p) -23.912=0 sin2(p) =0.23912 sin(p)=0.4889989... p=sin-1(0.488989...). p=29.3.

SR
Answered by Sachin R. Further Mathematics tutor

4839 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Integrate x^2sin(x) between -pi and pi


A tank contains 500L of salty water. Pure water is pumped in at a rate of 10 L/sec, and the the mixture is pumped out at a rate of 15L/ sec. If the concentration of salt is 5g/L initially, form an equation of amount of salt, s, at t seconds.


Show that the sum from 1 to n of 1/(2n+1)(2n-1) is equal to n/(2n+1) by Induction


The curve C has parametric equations x=cos(t)+1/2*sin(2t) and y =-(1+sin(t)) for 0<=t<=2π. Find a Cartesian equation for C. Find the volume of the solid of revolution of C about the y-axis.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning