Solve x^3=1 giving all the roots between -pi<=theta<=pi in exponential form

 x^3=1=e^2(pi)i

x=e^2(pi)ik/3

The three roots are

k=0    x=1 

k=1    x=e^2(pi)*i/3

k=-1   x=e^-2(pi)ik/3

Related Further Mathematics A Level answers

All answers ▸

Prove ∑r^3 = 1/4 n^2(n+1)^2


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


f(x) = 9x^3 – 33x^2 –55x – 25. Given that x = 5 is a solution of the equation f(x) = 0, use an algebraic method to solve f(x) = 0 completely.


A block of mass 50kg resting on a rough surface with a coefficient of friction equal to 1/3. Find the maximum angle at which the surface can be inclined to the horizontal without the block slipping. Give your answer to 3 significant figures


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences