Differentiate artanh(x) with respect to x

First we set y=artanh(x). Then we rearrange such that tanh(y)=x. There several approaches to find dy/dx, but the quickest is to use implicit differentiation.

The differential of tanh(y) is sech2y. We differentiate both sides with respect to x using implicit differentiation so that tanh(y)=x becomes sech2(y)(dy/dx)=1. We now rearrange this:

dy/dx=1/sech2y

We use the identity sech2y=1-tanh2y , and since x=tanh(y), we have

dy/dx=1/(1-tanh2y)= 1/(1-x2)

SH
Answered by Sam H. Further Mathematics tutor

12716 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Given y=arctan(3e^2x). Show dy/dx= 3/(5cosh(2x) + 4sinh(2x))


How to determine the modulus of a complex number?


find all the roots to the equation: z^3 = 1 + i in polar form


Prove e^(ix) = cos (x) + isin(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning