Differentiate artanh(x) with respect to x

First we set y=artanh(x). Then we rearrange such that tanh(y)=x. There several approaches to find dy/dx, but the quickest is to use implicit differentiation.

The differential of tanh(y) is sech2y. We differentiate both sides with respect to x using implicit differentiation so that tanh(y)=x becomes sech2(y)(dy/dx)=1. We now rearrange this:

dy/dx=1/sech2y

We use the identity sech2y=1-tanh2y , and since x=tanh(y), we have

dy/dx=1/(1-tanh2y)= 1/(1-x2)

SH
Answered by Sam H. Further Mathematics tutor

12123 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find values of x which satisfy the inequality: x^2-4x-2<10


Express f(x) = ln(x+1) as an infinite series in ascending powers of x up to the 3rd power of x


Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.


z = 50 / (3+4i). What is z in a+bi form?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning