Differentiate artanh(x) with respect to x

First we set y=artanh(x). Then we rearrange such that tanh(y)=x. There several approaches to find dy/dx, but the quickest is to use implicit differentiation.

The differential of tanh(y) is sech2y. We differentiate both sides with respect to x using implicit differentiation so that tanh(y)=x becomes sech2(y)(dy/dx)=1. We now rearrange this:

dy/dx=1/sech2y

We use the identity sech2y=1-tanh2y , and since x=tanh(y), we have

dy/dx=1/(1-tanh2y)= 1/(1-x2)

Related Further Mathematics A Level answers

All answers ▸

Show that the points on an Argand diagram that represent the roots of ((z+1)/z)^6 = 1 lie on a straight line.


Define tanh(t) in terms of exponentials


Express cos5x in terms of increasing powers of cosx


What is sin(x)/x for x =0?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences