f(x) = 2x + c, g(x) = cx + 5, fg(x) = 6x + d. c and d are constants. Work out the value of d. 3 marks.

fg(x) = 2(cx+5) + c

= 2cx+10+c                           [1 mark]

fg(x) = 6x+d. fg(x) = 2cx+10+c

6x = 2cx and d = 10+c          [2 marks]

3 = c and therefore d = 13    [3 marks]

HK
Answered by Heba K. Maths tutor

21653 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Prove algebraically that the straight line with equation x = 2y + 5 is a tangent to the circle with equation x^(2) + y^(2) = 5


Make x the subject of the equation y = {2(1+x)}/(3x+1)


Factorise x^2 + 2x - 3


In the triangle XYZ XY = 5.6 cm YZ = 10.5 cm angle XYZ = 90 Work out the length of XZ


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning