In one experiment, the temperature of 50 g of water increased from 22.0 °C to 38.4 °C. The mass of alcohol burned was 0.8 g. Calculate the heat energy (Q) in joules, released by burning 0.8 g of the alcohol.

Key Equation: Q = mcΔT Where: Q = heat transferred (J), m = mass of substance which is heated (g), c = heat capacity of water (J g-1 °C -1) and ΔT = temperature change for heated substance (°C) . c = 4.2 J g-1 °C -1 Heat energy is transferred to the water because alcohol burning releases heat. Hence, 'm' = the mass of the water heated. ΔT = 38.4 °C - 22.0 °C = 16.4 °C Substitute values into the Key Equation. I would recommend always including units in calculations, it will help us avoid errors. Q =  50 g x 4.2 J g-1 °C -1 x 16.4 °C = 3444 J 

Answered by David B. Chemistry tutor

11165 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

Balance the equation: C4H8 + O2 goes to CO2 + H2O


What is empirical formula and how is it worked out?


What is a mole and the calculations used to find the number of moles?


An unknown compound burns with a lilac flame and produces a yellow precipitate when mixed with dilute nitric acid and silver nitrate. Give the formula of the compound.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences