In one experiment, the temperature of 50 g of water increased from 22.0 °C to 38.4 °C. The mass of alcohol burned was 0.8 g. Calculate the heat energy (Q) in joules, released by burning 0.8 g of the alcohol.

Key Equation: Q = mcΔT Where: Q = heat transferred (J), m = mass of substance which is heated (g), c = heat capacity of water (J g-1 °C -1) and ΔT = temperature change for heated substance (°C) . c = 4.2 J g-1 °C -1 Heat energy is transferred to the water because alcohol burning releases heat. Hence, 'm' = the mass of the water heated. ΔT = 38.4 °C - 22.0 °C = 16.4 °C Substitute values into the Key Equation. I would recommend always including units in calculations, it will help us avoid errors. Q =  50 g x 4.2 J g-1 °C -1 x 16.4 °C = 3444 J 

Answered by David B. Chemistry tutor

10623 Views

See similar Chemistry GCSE tutors

Related Chemistry GCSE answers

All answers ▸

Why does butane have a higher boiling point than ethane?


describe the electrostatic force between water molecules


What effect does temperature change have on an equilibrium reaction?


Explain how crude oil gets separated into its components


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences