Prove that (AB)^-1 = B^-1 A^-1

This problem can be solved in 8 steps:

1. Let AB = C

2. A-1AB = A-1C

3. IB = A-1C as the identity matrix I = A-1A

4. B-1B = B-1A-1C premultiply both sides by B-1

5. I = B-1A-1C as B-1B = I, the identity matrix

6. C-1=B-1A-1CC-1 post multiple both sides by C-1

7. C-1=B-1A-1 as CC-1 = I, the identity matrix

8. (AB)-1=B-1A-1

KH
Answered by Katie H. Further Mathematics tutor

121744 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Solve this equation: x^2 + 2x + 2


Expand (1+x)^3. Express (1+i)^3 in the form a+bi. Hence, or otherwise, verify that x = 1+i satisfies the equation: x^3+2*x-4i = 0.


How do I integrate (sin x)^6?


A curve has the equation (5-4x)/(1+x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning