Prove that (AB)^-1 = B^-1 A^-1

This problem can be solved in 8 steps:

1. Let AB = C

2. A-1AB = A-1C

3. IB = A-1C as the identity matrix I = A-1A

4. B-1B = B-1A-1C premultiply both sides by B-1

5. I = B-1A-1C as B-1B = I, the identity matrix

6. C-1=B-1A-1CC-1 post multiple both sides by C-1

7. C-1=B-1A-1 as CC-1 = I, the identity matrix

8. (AB)-1=B-1A-1

KH
Answered by Katie H. Further Mathematics tutor

121737 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Show that the set of real diagonal (n by n) matrices (with non-zero diagonal elements) represent a group under matrix multiplication


Find the general solution to: d^(2)x/dt^(2) + 7 dx/dt + 12x = 2e^(-t)


Show, using de Moivre's theorem, that sin 5x = 16 sin^(5) x - 20 sin^(3) x + 5 sin x 


Prove by induction that the sum of the first n integers can be written as (1/2)(n)(n+1).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning