Prove that (AB)^-1 = B^-1 A^-1

This problem can be solved in 8 steps:

1. Let AB = C

2. A-1AB = A-1C

3. IB = A-1C as the identity matrix I = A-1A

4. B-1B = B-1A-1C premultiply both sides by B-1

5. I = B-1A-1C as B-1B = I, the identity matrix

6. C-1=B-1A-1CC-1 post multiple both sides by C-1

7. C-1=B-1A-1 as CC-1 = I, the identity matrix

8. (AB)-1=B-1A-1

KH
Answered by Katie H. Further Mathematics tutor

114086 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

If 0<x<1, find the following sum: S = 1+2*x + 3*x^2 + 4*x^3 + ...


Solve the inequality x/(x+2) ≤ 4/(x-3) for x ≠ -2 or 3


What does it mean if two matrices are said to be commutative?


How would go about finding the set of values of x for which x+4 > 4 / (x+1)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences