Find ∫ x^2(ln(4x))dx

 ∫xln(4x)dx

Firstly , identify this question as integration by parts. Therefore set one half as value 'u' and one as value 'dv'.

Here we will set u = ln(4x).

Therefore: du/dx = 1/4x . (4)        

                       du = 1/x dx                 We then set dv = x2 dx                                                          

                                                                          dv/dx = x2                                                              

                                                                                v = x3/3

The formula for integration by parts is :

u.v -  ∫v.du

= ln(4x).(x3) -  ∫(x3/3)(1/x)dx

= x3ln(4x) - ∫(x2/3)dx

= x3ln(4x) - x3/9 + c

Answered by Sally F. Maths tutor

10240 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


A ball is fired from a cannon at 20m/s at an angle of 56degrees to the horizontal. Calculate the horizontal distance the ball travels as well as its maximum height reached.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences