Find ∫ x^2(ln(4x))dx

 ∫xln(4x)dx

Firstly , identify this question as integration by parts. Therefore set one half as value 'u' and one as value 'dv'.

Here we will set u = ln(4x).

Therefore: du/dx = 1/4x . (4)        

                       du = 1/x dx                 We then set dv = x2 dx                                                          

                                                                          dv/dx = x2                                                              

                                                                                v = x3/3

The formula for integration by parts is :

u.v -  ∫v.du

= ln(4x).(x3) -  ∫(x3/3)(1/x)dx

= x3ln(4x) - ∫(x2/3)dx

= x3ln(4x) - x3/9 + c

SF
Answered by Sally F. Maths tutor

11573 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = 7 - 2x^5. a) Find dy/dx. b) Find an equation for the tangent to the curve at the point where x=1.


Solve $\color{orange}{a}x^2 - \color{blue}{b}x + \color{green}{c} = 0$


Given that y= x/(2x+5), find dy/dx


How Do I Integrate cos(x) and sin(x) with higher powers?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning