Find ∫ x^2(ln(4x))dx

 ∫xln(4x)dx

Firstly , identify this question as integration by parts. Therefore set one half as value 'u' and one as value 'dv'.

Here we will set u = ln(4x).

Therefore: du/dx = 1/4x . (4)        

                       du = 1/x dx                 We then set dv = x2 dx                                                          

                                                                          dv/dx = x2                                                              

                                                                                v = x3/3

The formula for integration by parts is :

u.v -  ∫v.du

= ln(4x).(x3) -  ∫(x3/3)(1/x)dx

= x3ln(4x) - ∫(x2/3)dx

= x3ln(4x) - x3/9 + c

SF
Answered by Sally F. Maths tutor

11493 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I differentiate: (3x + 7)^2?


When finding the turning points of a curve, how can I tell if it is a maximum, minimum or a point of inflection?


Differentiate with respect to x. y(x) = e^(7x^2)


Solve the equation 5^(2x) - 12(5^x) + 35 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning