Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.

This is an example of the chain rule.

The chain rule is the following: if y = uv, then dy/dx = udv/dx + vdu/dx

So in this case, u = ( 4x + 1)^3, v = sin(2x)

du/dx = (3)(4)( 4x + 1 )^2, dv/dx = 2cos(2x)

dy/dx = (12( 4x + 1)^2)sin(2x) + 2(( 4x + 1)^3)cos(2x)

DS
Answered by Danielle S. Maths tutor

4933 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that arctan(x)+e^x+x^3=0 has a unique solution.


Co-ordinate Geometry A-level: The equation of a circle is x^2+y^2+6x-2y-10=0, find the centre and radius of the circle, the co-ordinates of point(s) where y=2x-3 meets the circle and hence state what we can deduce about the relationship between them.


Using first principles find the differential of x^2


Solve the simultaneous equations: y - 3x + 2 = 0 y^2 - x - 6x^2 = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences