Given that y = (( 4x + 1 )^3)sin(2x), find dy/dx.

This is an example of the chain rule.

The chain rule is the following: if y = uv, then dy/dx = udv/dx + vdu/dx

So in this case, u = ( 4x + 1)^3, v = sin(2x)

du/dx = (3)(4)( 4x + 1 )^2, dv/dx = 2cos(2x)

dy/dx = (12( 4x + 1)^2)sin(2x) + 2(( 4x + 1)^3)cos(2x)

Answered by Danielle S. Maths tutor

4628 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first four terms in the binomial expansion of (2 + x) ^5


Turning points of the curve y = (9x^2 +1)/3x+2


A curve has equation y=x^2 + (3k - 4)x + 13 and a line has equation y = 2x + k, where k is constant. Show that the x-coordinate of any point of intersection of the line and curve satisfies the equation: x^2 + 3(k - 2)x + 13 - k = 0


How do you differentiate a function containing e?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences