Solve the inequality x(x+2)>8 for x.

x(x+2)>8 if and only if x^2+2x-8>0 if and only if (x+4)(x-2)>0. There are three cases: x<-4, -4 In the first case x+4<0 and x-2<0, so their product is positive: (x+4)(x-2)>0. Next x+4>0 and x-2<0, so their product is negative: (x+4)(x-2)>0. Finally x+4>0 and x-2>0, so their product is positive: (x+4)(x-2)>0. Hence the solutions are in the first and third cases when x<-4 or 2

JT
Answered by Joshua T. Maths tutor

4312 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I rewrite 2 cos x + 4 sin x as one sin function?


Differentiate y = 7(x)^2 + cos(x)sin(x)


A curve has parametric equations: x = 3t +8, y = t^3 - 5t^2 + 7t. Find the co-ordinates of the stationary points.


What is the binomial theorem and why is it true?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning