Solve the inequality x(x+2)>8 for x.

x(x+2)>8 if and only if x^2+2x-8>0 if and only if (x+4)(x-2)>0. There are three cases: x<-4, -4 In the first case x+4<0 and x-2<0, so their product is positive: (x+4)(x-2)>0. Next x+4>0 and x-2<0, so their product is negative: (x+4)(x-2)>0. Finally x+4>0 and x-2>0, so their product is positive: (x+4)(x-2)>0. Hence the solutions are in the first and third cases when x<-4 or 2

Answered by Joshua T. Maths tutor

3063 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember the difference between differentiation and integration?


Calculate (7-i*sqrt(6))*(13+i*sqrt(6))


The curve C has equation x^2 – 3xy – 4y^2 + 64 = 0; find dy/dx in terms of x and y, and thus find the coordinates of the points on C where dy/dx = 0


Express (2x-14)/(x^2+2x-15) as partial fractions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences