Solve the inequality x(x+2)>8 for x.

x(x+2)>8 if and only if x^2+2x-8>0 if and only if (x+4)(x-2)>0. There are three cases: x<-4, -4 In the first case x+4<0 and x-2<0, so their product is positive: (x+4)(x-2)>0. Next x+4>0 and x-2<0, so their product is negative: (x+4)(x-2)>0. Finally x+4>0 and x-2>0, so their product is positive: (x+4)(x-2)>0. Hence the solutions are in the first and third cases when x<-4 or 2

Answered by Joshua T. Maths tutor

3335 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 4(x^3) + 3x + 2 with respect to x


What are logarithms and how do you manipulate them?


Solve the following: sinx - cosx = 0 for 0≤x≤360


differentiate the equation f(x) = 3x^2+5x+3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences