Solve: a) 5t + 17 = 2 b) x^3 - 25 = 103 - x^3

a) Solving for t:
We isolate our unknown t on one side, to leave the factors of t on one side and the numbers on the other:
-1st step: substract 17 from both sides --> 5t = -15
-2nd step: divide by 5 on both sides --> t = -3

b) Solving for x: We now isolate the power of x on one side:
-1st step: add x^3 on both sides --> 2*(x^3)-25=103

-2nd step: add 25 on both sides --> 2*(x^3) = 128

-3rd step: divide by two on both sides --> x^3 = 64

  • Finally to get rid of the exponent, we take the cube root on both sides of the expression --> x = 4
Answered by Luis C. Maths tutor

3182 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A scalene triangle has side lengths a=xcm, b=10cm and c=15cm. The angle A=105 degrees is opposite side a. Using the cosine rule, find the value of x to 3 s.f.


simplify fully (x^2-5x+4)/(x^2-2x-8)


Write 2-(x+2)/(x-3)-(x-6)/(x+3) as a single fraction of ax+b/x^2-9. What is a and b?


Solve the quadratic equation 3x^2 + x – 5 = 0 give answers to 3 decimal places


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences