Find the inverse of a 3x3 matrix

There are 4 key steps to this question.

(i) calculate the matrix of minors: you want to find the determinant of each entry and this forms a new matrix. 

(ii) convert this into a matrix of cofactors: this is a 'checkerboard' of minuses that you apply to the matrix of minors, i.e. change the sign of alternate cells.

(iii) find the adjugate/adjoint: transpose all elements of the matrix of cofactors i.e. swap all positions of entries over the diagonal

(iv) multiply by 1/determinant: find the determinat of the original matrix. We have already calculated the determinants of the smaller parts in the first part of the question. To find the determinant, you multiply the top row elements by their 'minor' determinants. 

Best explained through a working example on a whiteboard. This question often carries a lot of marks in an exam paper, and the maths itself is not complex but it is very easy to make a mistake. 

JR
Answered by Josie R. Further Mathematics tutor

7270 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


How to approximate the Binomial distribution to the Normal Distribution


Unfortunately this box is to small to contain the question so please see the first paragraph of the answer box for the question.


Solve the following complex equation: '(a + b)(2 + i) = b + 1 + (10 + 2a)i' to find values for 'a' and 'b'


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning