You have a cubiod of dimension 2.2m by 1.8m by 2.0m, you have a pole of length 3m. Will the pole fit into the cuboid?

The longest straight line within the cuboid is the diagonal from a corner to the corner diagonally from it (show diagram), call this D. So to find out whether the pole will fit, find this length, if it is longer than the pole, then the pole will fit. We need to find the length from a bottom corner, to the corner diagonally across and above it. This is clearly the hypotenuse of a right angled triangle, and from pythagoras' theorem we know that the square of the hypotenuse is equal to the sum of the squares of the other lenths. So, we must find the other lengths. One of them is clearly just the height of the cuboid (say this is 2.2m), call this H. The other length is the diagonal of the bottom rectangle which has dimension 1.8m by 2.0m, call this E. The diagonal is the hypotenuse of a right angled triangle with other lengths 1.8m and 2.0m, by pythagoras' theorem (a^2 = b^2 + c^2) we can say; E^2 = 1.8^2 +2.0^2 = 7.24 => E = sqrt(7.24) = 2.6907.... We now have the two other lengths of the original right angled triangle, H (2.2m) and E (2.6907...m). So again, by pythagoras, we can say; D^2 = H^2 + E^2 = 2.2^2 + 2.6907^2 = 12.08 => D = sqrt(12.08) = 3.476... We have found that the longest straight line within the cuboid is 3.476m. This is greater than 3m, therefore the pole will fit.

GJ
Answered by Grace J. Maths tutor

4434 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the equation to find the value of t. (5t+3)/4=1


Rationalise the denominator of 2/(3-sqrt(2)).


Raya buys a van for £8500 plus VAT at 20%.Raya pays a deposit for the van. She then pays the rest of the cost in 12 equal payments of £531.25 each month. Find the ratio (in simplest form) of the deposit Raya pays to the total of the 12 equal payments.


How do I solve an algebraic expression when the unknown is on both sides of the equals sign?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning