What is Mathematical Induction?

Mathematical induction is a type of direct proof, where you can prove sequences or series. A good example of this is that we can prove 1 + 3 + 5 + .... + (2n-1) = n^2. There are 4 steps: 1. Prove the first case, or the n=1 case for this example. 2. Assume that the k-th case is true for any positive integer number k. 3. Using the assumption, prove that the (k+1)-th case. For this example we take n = k+1. 4. So we've just proved that if the k-th case is true then the (k+1)-th case must be true! So if the 1st case is true, then the 2nd case must be true. Then since the 2nd case is true, so must the 3rd case. This logic carries on and therefore we have proved what we wanted to prove for all integers!

Answered by Ayesha H. Maths tutor

3267 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation: x^2(4+y) - 2y^2 = 0 Find an expression for dy/dx in terms of x and y.


Express 4x/(x^2-9) - 2/(x+3) as a single fraction in its simplest form.


Find the first and second derivatives of: y = 6 - 3x -4x^-3, and find the x coordinates of the line's turning points


Given that y = 5x^2 - 4/(x^3), x not equal to 0, find dy/dx.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences