What is Mathematical Induction?

Mathematical induction is a type of direct proof, where you can prove sequences or series. A good example of this is that we can prove 1 + 3 + 5 + .... + (2n-1) = n^2. There are 4 steps: 1. Prove the first case, or the n=1 case for this example. 2. Assume that the k-th case is true for any positive integer number k. 3. Using the assumption, prove that the (k+1)-th case. For this example we take n = k+1. 4. So we've just proved that if the k-th case is true then the (k+1)-th case must be true! So if the 1st case is true, then the 2nd case must be true. Then since the 2nd case is true, so must the 3rd case. This logic carries on and therefore we have proved what we wanted to prove for all integers!

Answered by Ayesha H. Maths tutor

3418 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that 4(cosec x)^2 - (cot x)^2 = k, express sec x in terms of k.


How do I work out what integration method I should use to solve an integral?


A curve has parametric equations x = 2 sin θ, y = cos 2θ. Find y in terms of x


The point A lies on the curve y=5(x^2)+9x , The tangent to the curve at A is parralel to the line 2y-x=3. Find an equation to this tangent at A.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences