Express the recurring decimal 0.2131313 as a fraction

  1. Firstly, identify the recurring portion of the decimal. In this case, it is "13"

  2. set up an equation "x=0.2131313

  3. You need to place the repeating section to the left of the decimal point. To do this, you will need to multiply by 1000. Thus, the above equation becomes: 1000x= 213.131313

  4. now, you need to place the repeating portion to the right off the decimal point. To do this, you need to multiply by 10. This gives you: 10X=2.131313

  5. you have 2 simeltaneous equations now. subtract the second one from the first. this gives you: 1000x-10x = 213.131313-2.131313

  6. 990x= 210

  7. X= 210/990

  8. X=21/99

  9. X= 7/33

Answered by Abhijit N. Maths tutor

13780 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

simplify 4p^3 x 3p^4


How would you solve a quadratic equation (e.g. x^2-8x+15=0)?


Solve this set of simultaneous equations. 1. 4x+2y=12 2. 2x+3y=10


Nicky buys a blender. 20% VAT is added to the price of the blender so Nicky has to pay £180. What is the price of the blender with no VAT added?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences