Solve the simultaneous equations: 5x + 3y = 41 and 2x + 3y = 20 Do not use trial and error.

  1. 5x + 3y = 41   2) 2x + 3y = 20 Subtract equation 2) from equation 1) to cancel the y's (3y-3y = 0) .  Next we subtract  the x's (5x - 2x = 3x) and then finally we have 41 - 20 = 21. We now have that 3x = 21 ( remember both the y's have cancelled) so we can divide both sides by 3 to find that; x = 7
DT
Answered by David T. Maths tutor

19171 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve 6x-5 > 4x+13


A cylinder of base radius 2x and height 3x has the same volume as a cone of base radius 3x and height h. Find h in terms of x.


Sketch the graph of y= (x^2) -2x -3 labelling the turning points and points of intersection


How do I rationalise the denominator of √2+1]/√2-1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning