Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

Answered by Georgianna K. Maths tutor

13678 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 5x^2+5y^2-6xy=13 to find dy/dx


How do I multiply complex numbers?


When and how do I use integration by parts?


How do I remember what trig functions differentiate to?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences