Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

Answered by Georgianna K. Maths tutor

13674 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(C3 question). Find an expression for all stationary points on the curve y=sin(x)cos(x). How many such points are there and why?


Find the area between the positive x axis and the line given by y=-(x^2)+2x


Simplify and solve for x. log(x+1)+log 5=2. Note, log is the natural log in this case


Find the set of values for x for which x^2 - 9x <= 36


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences