Use the product rule to differentiate y=2xsinx

The product rule states that y=uv and dy/dx=(u)dv/dx + (v)du/dx. As the equation is in this form we can let u=2x and v=sinx. Therefore du/dx=2 and dv/dx=cosx. Substituting for u and v we get dy/dx=(2x)(cosx) + (sinx)(2) so dy/dx=2(xcosx + sinx).

Answered by Georgianna K. Maths tutor

13308 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

a) i) find dy/dx of y = 3x^4 - 8x^3 - 3 ii) then find d^2y/dx^2 b) verify that x=2 at a stationary point on the curve c c) is this point a minima or a maxima


integrate by parts the equation dy/dx = (3x-4)(2x^2+5).


Why is ꭍ2x=x^2+C?


Solve 2sin2θ = 1 + cos2θ for 0° ≤ θ ≤ 180°


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences