Solve for x, y, and z: 5x - 2y = 19 , 3x + 3z = 21 , y + z = 2

Like when there are two unknowns, the best way to solve this kind of problem is to rearrange and substitute, but because there are three unknowns, it's a bit more fiddly. To solve this you want to pick and isolate one of the unknowns so you can find its value, and once you've done this the other two are easy. I'm picking x. Rearrange the first equation to make y the subject, to give y = (5x - 19)/2, and rearrange the second equation to make z the subject, giving z = 7 - x. This means you have both equations in terms of x.

Now, you can substitute these equations for y and z into y + z = 2, giving (5x - 19)/2 + 7 - x = 2. Because x is the only unknown, this can be simplified to give the value of x; it turns out that x = 3. Now this is known, x = 3 can be substituted into the other two original equations to find y and z, showing y = -2, and z = 4. 

Answered by Dan T. Maths tutor

6806 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Natasha has two bags of fruit. both bags have the same number of fruit in total. 1/3rd of the fruit in bag 1 are apples and 15% of the fruit in bag 2 are apples. There are 20 apples in bag 1, how many apples are in bag 2?


How do signs change in an inequality?


What is the gradient and the y-intercept of the graph y = 3x + 7 ?


Solve( 3x−2)/4 −(2x+5)/3= (1−x )/6


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences