Find, using integration, the work done in compressing a spring by a distance x.

[integral from 0 to x']dW= [integral from 0 to x'] F(x') dx'

=[integral from 0 to x']kx' dx'

=1/2kx^2
It is a 1-D problem so line integral do not need to be used. At a given instant, let the amount by which the spring is already compressed be x'. The force in the spring is then F = kx', where k is the spring constant. This means if we compress the spring further by an infinitesimal dx, the work done is dW given by dW = kx' dx.
So it is possible to integrate to find the work done from x = 0 to x = x'.

Answered by Matteo T. Physics tutor

3052 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

How does the strong nuclear force between two nucleons varies with separation of the nucleons. Please detail the range over which the force acts.


A railway car of mass m1 travelling at a velocity of v1 collides with a second car of mass m2 travelling at v2 and the two join together. What is their final velocity?


A bullet is fired horizontally from a gun at a height of 1.5m at 280m/s. Calculate the time taken for it to hit the ground. A second bullet is fired from an adjacent gun at 370m/s. Calculate the distance it travel before the first bullet hits the ground.


What is resistivity in S.I. units?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences