Determine a vector expression for the position of a particle whose velocity is (3t^2 - 8)i + 5j m/s.

r(t) = [integral] v(t) dt

      = (t^3 - 8t + C)i + (5t + C)j m

MT
Answered by Matteo T. Physics tutor

2121 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An ideal gas within a closed system undergoes an isothermal expansion from an initial volume of 1m^3 to 2m^3. Given that the initial pressure of the gas is 10^5 Pa, find the final pressure of the gas following the expansion.


Two trains are heading in opposite directions on the same track. Train X has a mass of 16000kg and a speed of 2.8m/s. Train Y has a mass of 12000kg and a speed of 3.1m/s. At what speed do the joined trains move off together immediately after the collison?


Explain the change of quark character associated with the beta-plus decay and deduce the equation.


A Uranium-(238,92) nucleus decays into a Thorium-234 nucleus by the emission of an alpha-particle. Given Thorium has a chemical symbol Th build a nuclear equation.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning