Find the stationary point on the line of y = 6x - x^2 and state whether this point is a maximum or a minimum

This question requires differentiating the equation to find where its gradient is equal to zero. Differentation is done via a simple equation -->  if y = xn then dy/dx = nxn-1

Therefore if y = 6x - x2  , then dy/dx = 6(x0) - 2x1   , so   dy/dx = 6 - 2x

The gradient is 0 at the stationary point, so 6 - 2x = 0           2x = 6        so x = 3

To find y, substitute (x=3) into the original formula to find y.     y = 6(3) - 32   = 18 - 9    = 9

The stationary point is (3,9), and to find out whether this is a maximum or minimum, x=4 can be subbed in to the formula to find the next point on the line. y = 6(4) - 42   =  24 - 16     =    8     so the next point is (4,8)

This is below the stationary point, so we can see that (3,9) is a maximum.

Answered by Percy W. Maths tutor

5139 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)


What are complex and imaginary numbers and how are they different from normal (real) numbers?


Differentiate F(x)=(25+v)/v


Find the two real roots of the equation x^4 -5=4x^2 Give the roots in an exact form.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences