n sweets, 6 are orange, the rest are yellow. Sophie takes at random a sweet. She eats the sweet. Sophie then takes at random another sweet. She eats the sweet. The probability that Sophie eats two orange sweets is 1/3. Show that n² – n – 90 = 0

If Sophie takes a sweet from the bag on her first selection, there is a 6/n chance it will be orange. That’s because there are 6 oranges and n sweets. If Sophie takes a sweet from the bag on her second selection, there is a 5/(n-1) chance it will be orange. That’s because there are only 5 orange sweets left out of a total of n - 1 sweets. The chance of getting two orange sweets in a row is the first probability multiplied by the second one. Which is 6/n x 5/n–1 The question tells us that the chance of Sophie getting two orange sweets is 1/3. So: 6/n x 5/n–1 = 1/3 All we need to do now is rearrange this equation.

OL
Answered by Oliver L. Maths tutor

3119 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I work out the area of a quarter circle with radius 6cm?


A and B are points on a circle, centre O. BC is a tangent to the circle. AOC is a straight line. Angle ABO = x°. Find the size of angle ACB, in terms of x. Give your answer in its simplest form. Give reasons for each stage of your working.


Jon and Nik share money in the ratio 5 : 2 Jon gets £150 more than Nik. How much money do they share altogether?


For the equation 7x+3y=10x/y make x the subject.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning