n sweets, 6 are orange, the rest are yellow. Sophie takes at random a sweet. She eats the sweet. Sophie then takes at random another sweet. She eats the sweet. The probability that Sophie eats two orange sweets is 1/3. Show that n² – n – 90 = 0

If Sophie takes a sweet from the bag on her first selection, there is a 6/n chance it will be orange. That’s because there are 6 oranges and n sweets. If Sophie takes a sweet from the bag on her second selection, there is a 5/(n-1) chance it will be orange. That’s because there are only 5 orange sweets left out of a total of n - 1 sweets. The chance of getting two orange sweets in a row is the first probability multiplied by the second one. Which is 6/n x 5/n–1 The question tells us that the chance of Sophie getting two orange sweets is 1/3. So: 6/n x 5/n–1 = 1/3 All we need to do now is rearrange this equation.

OL
Answered by Oliver L. Maths tutor

3032 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

3x^2 + 7x - 13 = 0. What is x?


A line passes through coordinates (-2,4) and (8,9). Does the point with coordinates (32,55) fall on this line?


Find the nth term in the series: 3, 7, 11, 15, 19


(a)Show that the lines y=3x+7 and 2y–6x=8 are parallel. [3 marks] (b) Is the point (–5, –6) above, below or on the line y = 3x + 7 ? Do not use a graphical method. [2 marks] [Total 5 marks]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning