How do I solve a quadratic equation by factorising?

 A quadratic equation is one that includes xas the highest power of x. Factorising is achieved in 3 steps. Let’s consider the example x2-3x-3=11) Put the equation into the form ax2+bx+c=0x2-3x-4=02) FactoriseWe need two numbers that- add together to get -3- Multiply together to get -4-4x1=-4 and -4+1=-3Thus, factorising gives (x-4)(x+1)=03) Solve the equation!If two numbers are multiplied together to give 0, one of them must be 0. Thus:x-4=0 and x=4x+1=0 and x=-1The equation has been solvedAdditional points:- This technique can be applied to finding the points of intersection on the x axis for a quadratic graph. For example, y=x2-3x-4. At the x axis, y=0 so you can work out x as above.- Harder quadratic equations can also be solved by factorising. For example when a isn't 1. 2x2 + 7x + 3=0Find two numbers that multiply to give 2x3 (6) and add to give 7. In this case, 6 and 1.Split 7x into 6x +x2x2 + 6x+x + 3=0Factorise each part by taking out a common factor. 2x(x+3)+1(x + 3)=0The sames as(2x+1)(x+3)=0thus x = -1/2 or x=-3Practice questions1. Solve by factorisingx2 + 6x + 8=0x2 – 8x + 16 = 02. Find the points of intersection with the x axis fory=x2 – 14x + 48and sketch this function

Answered by Shannon G. Maths tutor

4057 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

(a) Factorisefully 3a3b+12a2b2 +9a5b3


Prove that the square of an odd number is always 1 more than a multiple of 4


There are 2 banks, Bank A and Bank B. Bank A provides compound interest of 1.3%. Bank B provides interest of 3.5% for the first year and then 0.7% for each extra year. James wants to invest £250. Which bank provides the most interest after 4 years?


How do I solve simultaneous equations given a linear and a quadratic equation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences