How do I find the turning points of a curve?

At turning points, the gradient is 0. Differentiating an equation gives the gradient at a certain point with a given value of x. To find turning points, find values of x where the derivative is 0.Example:y=x2-5x+6dy/dx=2x-52x-5=0x=5/2Thus, there is on turning point when x=5/2. To find y, substitute the x value into the original formula. y=(5/2)2-5x(5/2)+6y=99/4Thus, turning point at (5/2,99/4).Additional pointsOnce turning point is identified, you can work out if it is a maximum or minimum by finding d2y/dx2. d2y/dx2<0 - maximumd2y/dx2.>0 - minimumThus for our example aboved2y/dx2=2 - minimum

Answered by Shannon G. Maths tutor

84729 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate xcos(x)


A function f is defined by f(x) = x^3 - 3x^2 + 1. i) Write down f'(x). ii) Hence find the co-ordinates of the stationary points of the curve y=f(x).


Can you prove to me why cos^2(X) + sin^2(X) = 1?


A function is defined by f(x)=x/(2x-2)^(1/2): (a)Determine the maximum domain of f. (b)Differentiate f. (c)Find the inflection points of the function's graph.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences