How do I find the turning points of a curve?

At turning points, the gradient is 0. Differentiating an equation gives the gradient at a certain point with a given value of x. To find turning points, find values of x where the derivative is 0.Example:y=x2-5x+6dy/dx=2x-52x-5=0x=5/2Thus, there is on turning point when x=5/2. To find y, substitute the x value into the original formula. y=(5/2)2-5x(5/2)+6y=99/4Thus, turning point at (5/2,99/4).Additional pointsOnce turning point is identified, you can work out if it is a maximum or minimum by finding d2y/dx2. d2y/dx2<0 - maximumd2y/dx2.>0 - minimumThus for our example aboved2y/dx2=2 - minimum

SG
Answered by Shannon G. Maths tutor

88189 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Of the following 4 equations, 3 of them represent parallel lines. Which is the odd one out?


Find the exact value of x from the equation 3^x * e^4x = e^7


What is the integral of sin^2(x)?


Express (x+1)/2x + (2x+3)/(x+1) as one term


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning