How do I find the turning points of a curve?

At turning points, the gradient is 0. Differentiating an equation gives the gradient at a certain point with a given value of x. To find turning points, find values of x where the derivative is 0.Example:y=x2-5x+6dy/dx=2x-52x-5=0x=5/2Thus, there is on turning point when x=5/2. To find y, substitute the x value into the original formula. y=(5/2)2-5x(5/2)+6y=99/4Thus, turning point at (5/2,99/4).Additional pointsOnce turning point is identified, you can work out if it is a maximum or minimum by finding d2y/dx2. d2y/dx2<0 - maximumd2y/dx2.>0 - minimumThus for our example aboved2y/dx2=2 - minimum

Answered by Shannon G. Maths tutor

86169 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to differentiate using the chain rule


Integration of ln(x)


Given that y=sin2x(3x-1)^4, find dy/dx


A particle P is projected vertically upwards from a point 20m above the ground with velocity 18m/s, no external forces act on it other than gravity. What will its speed be right before it hits the ground? Give your answer to one decimal place.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences