Find the general solution of the second order differential equation: y''+2y'-3 = 0

This is a homogeneous second order equation with constant coefficients, so all we need to do is find the complementary function: We write: m2+2m-3=0 which has solutions m=1 or m=-3 We have two real solutions, so we get two exponential terms in the general solution: ex and e-3x This gives the general solution (putting in arbitrary constants): y = Aex+Be-3x

MD
Answered by Matthew D. Further Mathematics tutor

5804 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the general solution to the differential equation d^2x/dt^2 + 5 dx/dt + 6x = 4 e^-t


Using a Taylor's series or otherwise; derive Euler's Formula


Differentiate artanh(x) with respect to x


How do I sketch the locus of |z - 5-3i | = 3 on an Argand Diagram?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning