Find the general solution of the second order differential equation: y''+2y'-3 = 0

This is a homogeneous second order equation with constant coefficients, so all we need to do is find the complementary function: We write: m2+2m-3=0 which has solutions m=1 or m=-3 We have two real solutions, so we get two exponential terms in the general solution: ex and e-3x This gives the general solution (putting in arbitrary constants): y = Aex+Be-3x

Related Further Mathematics A Level answers

All answers ▸

Write the Maclaurin’s series for f(x)=sin(3x)+e^x up to the third order


Find the stationary points of the function z = 3x(x+y)3 - x3 + 24x


A particle is launched from the top of a cliff of height 87.5m at time t=0 with initial velocity 14m/s at 30 deg above the horizontal, Calculate: a) maximum height reached above bottom of cliff; b)horizontal distance travelled before hitting the ground.


Use induction to prove that for all positive integers n, f(n)=2^(3n+1)+3x5^(2n+1) is divisible by 17.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences